Pseudoelasticity of Shape Memory Alloys - a 1D Material Model and Finite Element Implementation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys

This article documents a new implementation of a three dimensional constitutive model that describes evolution of elastic and transformation strains during thermo-mechanical shape memory alloy loading events assuming a symmetric, isotropic material response. In achieving this implementation, improvements were made to the original formulation of the constitutive model. These improvements allow f...

متن کامل

A 3d Micro-Plane Model for Shape Memory Alloys

are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...

متن کامل

Finite-element-simulations of polycrystalline shape memory alloys

Shape memory alloys (SMA) are widely employed as sensors and actuators. The need for precise control requires reliable modeling techniques involving, e.g., prescribed stresses and temperatures. These parameters are always inherently coupled in SMA. Various models are in use to characterize the non-linear hysteretic behavior of SMA; among them some that do not provide a means to incorporate true...

متن کامل

Application of Shape Memory Alloys in Seismic Isolation: A Review

In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...

متن کامل

Shape memory and pseudoelasticity in metal nanowires.

Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2010

ISSN: 1617-7061

DOI: 10.1002/pamm.201010178